Cyclotomic Factors of
Necklace Polynomials
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Necklaces of length 6 in 3 colors:

Necklace is primitive if it has no rotational symmetry.



Counting Primitive Necklaces

Fact: For each length d > 1 there is a polynomial My(x) such
that My(k) is the number of length d primitive necklaces in k
colors.

M4(x) is called the dth necklace polynomial,

Mq(x) = Z u(ex/e.

e|d

Ex. d =10,



Other Interpretations

Necklace polys. arise naturally in a variety of contexts.

Algebraic dynamics
Representation theory
Lie algebras

Group theory

Number theory

Ex. (Witt) The dimension of the degree d homogeneous
part of the free Lie algebra on g generators is My(g).

Ex. (Gauss) If g is a prime power, then My(q) is the number
of degree d irreducible polynomials in Fg[x].



How Does M,(x) Factor?

Mig(X) = 5(x"0 — x° — X% + x)

= 03+ x2 =1 = x+ D)+ T)(x + T)(x — )x



How Does M,(x) Factor?

Mio(x) = 15(x"® —x° —x* + x)
= L3+ x2 =) —x + D)+ T)(x + T)(x — )x

:%(X3+X2—1)-(D6~¢4-¢2-¢1-X

> ®m(x) is the mth cyclotomic polynomial, the minimal
polynomial over Q of {;, a primitive mth root of unity.



More Examples

Migs(X) = 705 (X% — x®5 —x2" = x® 4 X + x® +-x° — x)
:f1.d>8-d>6-¢4~¢3-d>2-d>1-x

(x253 _ x23

Mas3(X) = 753 X2 —x" 4 x)
=1 ®og- Doy - Ogp - Dyg - Dg - G5 - Dy - Dq - X
Myan(x) = 1= (X7 — X2 — x5 — %39 4 x1° 4 x4 x3 _ x)
=13 ®gp - P1g- D1z g - g - Oy - O3 - Dy - D - X,

where f1, 5, f3 are non-cyclotomic irred. polynomials of degrees
92, 210, and 708 respectively.



Cyclotomic Factor Phenomenon (CFP)

CFP: The preponderance of cyclotomic factors of necklace
polynomials.

> ®m(x) dividing My(x) is equivalent to My(¢m) = 0.

Question: When and why does @, (x) divide My(x)?



Simplifying Conjecture

Observation: When &, (x) divides Mqg5(x), so does ®¢(x) for all
divisors e | m.

Migs(X) = f - @g - P - Dy - D3 - Dy - g - X

Recall that
XM —1=[] ®ex).

elm

Thus all cyclotomic factors of Myp5(x) accounted for by

X8 — 1, X6 —1 | M105(X).



Simplifying Conjecture

Most cyclotomic factors of necklace polynomials are
accounted for by factors of the form x™ — 1, but not all!

Mig(X) =g - ®g - g - Oy - D7 - X
> ®g divides Mqg(x) but &3 does not.

Recall that
X" +1= H de(x).

e|l2m

etm

> x3 4+ 1= dg - dy, thus all cyclotomic factors of Mqg(x)
accounted for by

X2 +1, x4 = 1| Myg(x).



Simplifying Conjecture

Conjecture (H. 2018)

If ®m(x) divides My(x), then either x™ — 1 divides My(x) or m is
even and x™/2 41 divides My(x).

Checked for1<m < 300and 1< d < 5000.
Easier to analyze factors for the form x™ + 1!
(Heuristic) There are good reasons for My(x) to have

factors of the form x™ + 1 and we do not expect any
special factors without a good reason.



Structure of Cyclotomic Factors

This result highlights some of the structure underlying the CFP.

Theorem (H. 2018)

Letm,d > 1.
Ubiquity
If p| dis aprime and p =1 mod m, then x™ — 1| My(x).
> In particular, xP~1 — 1 | My(x) for each p | d.

Multiplicative Inheritance
Ifx™ —1| My(x), then x™ — 1| Mge(X).
Ifx™ + 1| My(x) and e is odd, then x™ + 1 | Mge(X).
> Mgy(x) generally does not divide Mge(x).

Necessary Condition
If x™ — 1| My(x), then m | ©(d).
> (d) :=|(Z/(d))*| is the Euler totient function.



Non-Trivial Factors

Thm: If p | d, then xP~" — 1 divides My(x).
> Mp(x) = 3 (X" —X).

Ex.d=105=3-5.7.

M‘IOS(X): %(X105—X35—X21—X15 —|—X7 +X5 +X3—X)
:f1-d>8-d>6-¢4-d>3-d>2-<b1-x

> Non-trivial factors x™ + 1 are those not given by theorem.
> x® — 1is a non-trivial factor of Mqg5(x).

Goal: Characterize/classify the non-trivial cyclotomic factors of
necklace polynomials.



CFP & Relations in Cyclotomic Units

Theorem (H. 2018)
Letm,d > 1such thatmtd. If xX™ —1 | My(x), then

xm —

1
00— 1

Equivalently, if Mg(¢{m) = O for all mth roots of unity (m, then for
all non-trivial {m,

‘Dd(Cm) =1



CFP & Relations in Cyclotomic Units

Theorem (H. 2018)

Let m,d > 1such that m t d. If My(¢m) = O for all mth roots of
unity (m, thenfor all non-trivial {m

Pg(Cm) = 1.
Ex. x8 — 1| Mqg5(x), so

1= ¢105(<3) = H (CS - CJI.OS)'

je(z,/(105))*

Factors on right are called cyclotomic units.
CFP gives multiplicative relations in cyclotomic units.



CFP & Relations in Cyclotomic Units

There are trivial relations satisfied by cyclotomic units
coming from complex conjugation and taking norms.

Milnor conj. only trivial relations,
Bass (1966) published a proof.

Ennola (1972) discovered new non-trivial relations, proved
these give complete presentation.

Observation:

> Trivial cyclo. factors of necklace polys. give trivial cyclo. unit
relations.

> Non-trivial cyclo. factors give non-trivial cyclo. unit relations.



CFP & Euler Characteristics

Let Irry(K) denote the space of deg. d irreducible monic
polynomials in K[x].

> Mq(q) = [Irrg(Fg).
Theorem (H. 2018)
Letd > 1and let x. denote the compactly supported Euler

characteristic.
1 d=1
o(1) = xe(Irr(C)) {0 i
-1 d=1
My(=1) = xc(Irrg(R)) = ¢ 1 d=2



CFP & Euler Characteristics

Since C is alg. closed, only have irreducible polynomials in
degree 1.

T d=1
0 d>1.

C

Irrg1(C) = {@ Z> 1 — My(1) = {

Therefore d > 1implies ®; = x — 1 divides My(x).



CFP & Euler Characteristics

All irreducible polynomials over R have degree at most 2.

R d=1 -1 d=1
II‘I‘d’—I(R): u d=2 :>Md(—1): 1T d=2
0 d>2, 0 d>2.

U={x>+bx+c:b>—4c <0}

c




CFP & Euler Characteristics

Allirred. polys. over R have degree at most 2.

R d=1 -1 d=1
Irrg1(R)=qU d=2 = My(-1) = 1 d=2
0 d>2, 0 d>2

Therefore, d > 2 implies x? — 1 divides My(x).

Geometric explanation of My((m) = 0 form > 2?



Generalizations

The CFP extends along at least two natural generalizations of
necklace polynomials.

If G is a finite group then one can define a G-necklace
polynomial Mg(x).

If G = Cyq is cyclic, then Mc,(x) = My(x).

CFP holds whenever G is solvable.

Ifd,n > 1, letIrry ,(IFq) be the space of deg. d irreducible
polynomials in Fg[x1,x2, ..., Xn].
Define the higher necklace polynomials M, ,(x) by

Mg n (q) = |Irrd,n (Fq) E

Mg (x) = Ma(x).
For each n, CFP holds for all but finitely many d.



Thank you!




