Cyclotomic Factors of Necklace Polynomials

Trevor Hyde

 University of Michigan
Necklaces

Necklaces of length 6 in 3 colors:

Necklace is primitive if it has no rotational symmetry.

Counting Primitive Necklaces

Fact: For each length $d \geq 1$ there is a polynomial $M_{d}(x)$ such that $M_{d}(k)$ is the number of length d primitive necklaces in k colors.
$M_{d}(x)$ is called the d th necklace polynomial,

$$
M_{d}(x)=\frac{1}{d} \sum_{e \mid d} \mu(e) x^{d / e}
$$

Ex. $d=10$,

$$
M_{10}(x)=\frac{1}{10}\left(x^{10}-x^{5}-x^{2}+x\right)
$$

Other Interpretations

Necklace polys. arise naturally in a variety of contexts.

- Algebraic dynamics
- Representation theory
- Lie algebras
- Group theory
- Number theory

Ex. (Witt) The dimension of the degree d homogeneous part of the free Lie algebra on g generators is $M_{d}(g)$.

Ex. (Gauss) If q is a prime power, then $M_{d}(q)$ is the number of degree d irreducible polynomials in $\mathbb{F}_{q}[x]$.

How Does $M_{d}(x)$ Factor?

$$
\begin{aligned}
M_{10}(x) & =\frac{1}{10}\left(x^{10}-x^{5}-x^{2}+x\right) \\
& =\frac{1}{10}\left(x^{3}+x^{2}-1\right)\left(x^{2}-x+1\right)\left(x^{2}+1\right)(x+1)(x-1) x
\end{aligned}
$$

How Does $M_{d}(x)$ Factor?

$$
\begin{aligned}
M_{10}(x) & =\frac{1}{10}\left(x^{10}-x^{5}-x^{2}+x\right) \\
& =\frac{1}{10}\left(x^{3}+x^{2}-1\right)\left(x^{2}-x+1\right)\left(x^{2}+1\right)(x+1)(x-1) x \\
& =\frac{1}{10}\left(x^{3}+x^{2}-1\right) \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
\end{aligned}
$$

$\triangleright \Phi_{m}(x)$ is the m th cyclotomic polynomial, the minimal polynomial over \mathbb{Q} of ζ_{m} a primitive m th root of unity.

More Examples

$$
\begin{aligned}
M_{105}(x) & =\frac{1}{105}\left(x^{105}-x^{35}-x^{21}-x^{15}+x^{7}+x^{5}+x^{3}-x\right) \\
& =f_{1} \cdot \Phi_{8} \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{3} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
\end{aligned}
$$

$$
\begin{aligned}
M_{253}(x) & =\frac{1}{253}\left(x^{253}-x^{23}-x^{11}+x\right) \\
& =f_{2} \cdot \Phi_{24} \cdot \Phi_{22} \cdot \Phi_{11} \cdot \Phi_{10} \cdot \Phi_{8} \cdot \Phi_{5} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
\end{aligned}
$$

$$
M_{741}(x)=\frac{1}{741}\left(x^{741}-x^{247}-x^{57}-x^{39}+x^{19}+x^{13}+x^{3}-x\right)
$$

$$
=f_{3} \cdot \Phi_{20} \cdot \Phi_{18} \cdot \Phi_{12} \cdot \Phi_{9} \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{3} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
$$

where f_{1}, f_{2}, f_{3} are non-cyclotomic irred. polynomials of degrees 92,210 , and 708 respectively.

Cyclotomic Factor Phenomenon (CFP)

CFP: The preponderance of cyclotomic factors of necklace polynomials.
$\triangleright \Phi_{m}(x)$ dividing $M_{d}(x)$ is equivalent to $M_{d}\left(\zeta_{m}\right)=0$.

Question: When and why does $\Phi_{m}(x)$ divide $M_{d}(x)$?

Simplifying Conjecture

Observation: When $\Phi_{m}(x)$ divides $M_{105}(x)$, so does $\Phi_{e}(x)$ for all divisors e|m.

$$
M_{105}(x)=f \cdot \Phi_{8} \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{3} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
$$

Recall that

$$
x^{m}-1=\prod_{e \mid m} \Phi_{e}(x)
$$

Thus all cyclotomic factors of $M_{105}(x)$ accounted for by

$$
x^{8}-1, x^{6}-1 \mid M_{105}(x)
$$

Simplifying Conjecture

Most cyclotomic factors of necklace polynomials are accounted for by factors of the form $x^{m}-1$, but not all!

$$
M_{10}(x)=g \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
$$

$\triangleright \Phi_{6}$ divides $M_{10}(x)$ but Φ_{3} does not.
Recall that

$$
x^{m}+1=\prod_{\substack{e \mid 2 m \\ e \nmid m}} \Phi_{e}(x)
$$

$\triangleright x^{3}+1=\Phi_{6} \cdot \Phi_{2}$, thus all cyclotomic factors of $M_{10}(x)$ accounted for by

$$
x^{3}+1, x^{4}-1 \mid M_{10}(x)
$$

Simplifying Conjecture

Conjecture (H. 2018)

If $\Phi_{m}(x)$ divides $M_{d}(x)$, then either $x^{m}-1$ divides $M_{d}(x)$ or m is even and $x^{m / 2}+1$ divides $M_{d}(x)$.

Checked for $1 \leq m \leq 300$ and $1 \leq d \leq 5000$.
Easier to analyze factors for the form $x^{m} \pm 1$!
(Heuristic) There are good reasons for $M_{d}(x)$ to have factors of the form $x^{m} \pm 1$ and we do not expect any special factors without a good reason.

Structure of Cyclotomic Factors

This result highlights some of the structure underlying the CFP.

Theorem (H. 2018)

Let $m, d \geq 1$.

Ubiquity

If $p \mid d$ is a prime and $p \equiv 1 \bmod m$, then $x^{m}-1 \mid M_{d}(x)$.
\triangleright In particular, $x^{p-1}-1 \mid M_{d}(x)$ for each $p \mid d$.

Multiplicative Inheritance

- If $x^{m}-1 \mid M_{d}(x)$, then $x^{m}-1 \mid M_{d e}(x)$.
- If $x^{m}+1 \mid M_{d}(x)$ and e is odd, then $x^{m}+1 \mid M_{d e}(x)$.
$\triangleright M_{d}(x)$ generally does not divide $M_{d e}(x)$.

Necessary Condition

If $x^{m}-1 \mid M_{d}(x)$, then $m \mid \varphi(d)$.
$\triangleright \varphi(d):=\left|(\mathbb{Z} /(d))^{\times}\right|$is the Euler totient function.

Non-Trivial Factors

Thm: If $p \mid d$, then $x^{p-1}-1$ divides $M_{d}(x)$.
$\triangleright M_{p}(x)=\frac{1}{p}\left(x^{p}-x\right)$.
Ex. $d=105=3 \cdot 5 \cdot 7$.

$$
\begin{aligned}
M_{105}(x) & =\frac{1}{105}\left(x^{105}-x^{35}-x^{21}-x^{15}+x^{7}+x^{5}+x^{3}-x\right) \\
& =f_{1} \cdot \Phi_{8} \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{3} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x
\end{aligned}
$$

\triangleright Non-trivial factors $x^{m} \pm 1$ are those not given by theorem.
$\triangleright x^{8}-1$ is a non-trivial factor of $M_{105}(x)$.
Goal: Characterize/classify the non-trivial cyclotomic factors of necklace polynomials.

CFP \& Relations in Cyclotomic Units

Theorem (H. 2018)

Let $m, d \geq 1$ such that $m \nmid d$. If $x^{m}-1 \mid M_{d}(x)$, then

$$
\left.\frac{x^{m}-1}{x-1} \right\rvert\, \Phi_{d}(x)-1
$$

Equivalently, if $M_{d}\left(\zeta_{m}\right)=0$ for all mth roots of unity ζ_{m}, then for all non-trivial ζ_{m},

$$
\Phi_{d}\left(\zeta_{m}\right)=1
$$

CFP \& Relations in Cyclotomic Units

Theorem (H. 2018)

Let $m, d \geq 1$ such that $m \nmid d$. If $M_{d}\left(\zeta_{m}\right)=0$ for all mth roots of unity ζ_{m}, thenfor all non-trivial ζ_{m}

$$
\Phi_{d}\left(\zeta_{m}\right)=1
$$

Ex. $x^{8}-1 \mid M_{105}(x)$, so

$$
1=\Phi_{105}\left(\zeta_{8}\right)=\prod_{j \in(\mathbb{Z} /(105))^{\times}}\left(\zeta_{8}-\zeta_{105}^{j}\right)
$$

Factors on right are called cyclotomic units.

- CFP gives multiplicative relations in cyclotomic units.

CFP \& Relations in Cyclotomic Units

There are trivial relations satisfied by cyclotomic units coming from complex conjugation and taking norms.

Milnor conj. only trivial relations, Bass (1966) published a proof.

Ennola (1972) discovered new non-trivial relations, proved these give complete presentation.

Observation:

\triangleright Trivial cyclo. factors of necklace polys. give trivial cyclo. unit relations.
\triangleright Non-trivial cyclo. factors give non-trivial cyclo. unit relations.

CFP \& Euler Characteristics

Let $\operatorname{Irr}_{d}(K)$ denote the space of deg. d irreducible monic polynomials in $K[x]$.
$\triangleright M_{d}(q)=\left|\operatorname{Irr}_{d}\left(\mathbb{F}_{q}\right)\right|$.

Theorem (H. 2018)

Let $d \geq 1$ and let χ_{c} denote the compactly supported Euler characteristic.

$$
\begin{gathered}
M_{d}(1)=\chi_{c}\left(\operatorname{Trr}_{d}(\mathbb{C})\right)= \begin{cases}1 & d=1 \\
0 & d>1\end{cases} \\
M_{d}(-1)=\chi_{c}\left(\operatorname{Irr}_{d}(\mathbb{R})\right)=\left\{\begin{array}{rr}
-1 & d=1 \\
1 & d=2 \\
0 & d>2
\end{array}\right.
\end{gathered}
$$

CFP \& Euler Characteristics

Since \mathbb{C} is alg. closed, only have irreducible polynomials in degree 1.

$$
\operatorname{Irr}_{d, 1}(\mathbb{C})=\left\{\begin{array}{ll}
\mathbb{C} & d=1 \\
\emptyset & d>1
\end{array} \Longrightarrow M_{d}(1)= \begin{cases}1 & d=1 \\
0 & d>1\end{cases}\right.
$$

Therefore $d>1$ implies $\Phi_{1}=x-1$ divides $M_{d}(x)$.

CFP \& Euler Characteristics

All irreducible polynomials over \mathbb{R} have degree at most 2.

$$
\operatorname{Irr}_{d, 1}(\mathbb{R})=\left\{\begin{array}{ll}
\mathbb{R} & d=1 \\
\mathcal{U} & d=2 \\
\emptyset & d>2,
\end{array} \Longrightarrow M_{d}(-1)=\left\{\begin{array}{rl}
-1 & d=1 \\
1 & d=2 \\
0 & d>2
\end{array}\right.\right.
$$

$$
\mathcal{U}=\left\{x^{2}+b x+c: b^{2}-4 c<0\right\}
$$

CFP \& Euler Characteristics

All irred. polys. over \mathbb{R} have degree at most 2.

$$
\operatorname{Irr}_{d, 1}(\mathbb{R})=\left\{\begin{array}{ll}
\mathbb{R} & d=1 \\
U & d=2 \\
\emptyset & d>2,
\end{array} \Longrightarrow M_{d}(-1)=\left\{\begin{array}{rl}
-1 & d=1 \\
1 & d=2 \\
0 & d>2
\end{array}\right.\right.
$$

Therefore, $d>2$ implies $x^{2}-1$ divides $M_{d}(x)$.
Geometric explanation of $M_{d}\left(\zeta_{m}\right)=0$ for $m>2$?

Generalizations

The CFP extends along at least two natural generalizations of necklace polynomials.

If G is a finite group then one can define a G-necklace polynomial $M_{G}(x)$.

If $G=C_{d}$ is cyclic, then $M_{C_{d}}(x)=M_{d}(x)$.
CFP holds whenever G is solvable.
If $d, n \geq 1$, let $\operatorname{Irr}_{d, n}\left(\mathbb{F}_{q}\right)$ be the space of deg. d irreducible polynomials in $\mathbb{F}_{q}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

Define the higher necklace polynomials $M_{d, n}(x)$ by

$$
M_{d, n}(q):=\left|\operatorname{Irr}_{d, n}\left(\mathbb{F}_{q}\right)\right|
$$

$M_{d, 1}(x)=M_{d}(x)$.
For each n, CFP holds for all but finitely many d.

Thank you!

