

Necklaces of length 6 in 3 colors:

Necklace is primitive if it has no rotational symmetry.

Fact: For each length $d \ge 1$ there is a polynomial $M_d(x)$ such that $M_d(k)$ is the number of length d primitive necklaces in k colors.

 $M_d(x)$ is called the *d*th necklace polynomial,

$$M_d(\mathbf{x}) = rac{1}{d} \sum_{\mathbf{e}|d} \mu(\mathbf{e}) \mathbf{x}^{d/\mathbf{e}}.$$

Ex. *d* = 10,

$$M_{10}(x) = \frac{1}{10}(x^{10} - x^5 - x^2 + x).$$

Necklace polys. arise naturally in a variety of contexts.

- Algebraic dynamics
- Representation theory
- Lie algebras
- Group theory
- Number theory
- **Ex.** (Witt) The dimension of the degree *d* homogeneous part of the free Lie algebra on *g* generators is $M_d(g)$.
- **Ex.** (Gauss) If q is a prime power, then $M_d(q)$ is the number of degree d irreducible polynomials in $\mathbb{F}_q[x]$.

$$\begin{split} M_{10}(x) &= \frac{1}{10}(x^{10} - x^5 - x^2 + x) \\ &= \frac{1}{10}(x^3 + x^2 - 1)(x^2 - x + 1)(x^2 + 1)(x + 1)(x - 1)x \end{split}$$

$$\begin{split} M_{10}(x) &= \frac{1}{10}(x^{10} - x^5 - x^2 + x) \\ &= \frac{1}{10}(x^3 + x^2 - 1)(x^2 - x + 1)(x^2 + 1)(x + 1)(x - 1)x \\ &= \frac{1}{10}(x^3 + x^2 - 1) \cdot \Phi_6 \cdot \Phi_4 \cdot \Phi_2 \cdot \Phi_1 \cdot x \end{split}$$

▷ $\Phi_m(x)$ is the *m*th cyclotomic polynomial, the minimal polynomial over \mathbb{Q} of ζ_m a primitive *m*th root of unity.

$$M_{105}(x) = \frac{1}{105}(x^{105} - x^{35} - x^{21} - x^{15} + x^7 + x^5 + x^3 - x)$$

= $f_1 \cdot \Phi_8 \cdot \Phi_6 \cdot \Phi_4 \cdot \Phi_3 \cdot \Phi_2 \cdot \Phi_1 \cdot x$

$$M_{253}(x) = \frac{1}{253}(x^{253} - x^{23} - x^{11} + x)$$

= $f_2 \cdot \Phi_{24} \cdot \Phi_{22} \cdot \Phi_{11} \cdot \Phi_{10} \cdot \Phi_8 \cdot \Phi_5 \cdot \Phi_2 \cdot \Phi_1 \cdot x$

$$\begin{aligned} \mathsf{M}_{741}(x) &= \frac{1}{741} (x^{741} - x^{247} - x^{57} - x^{39} + x^{19} + x^{13} + x^3 - x) \\ &= f_3 \cdot \Phi_{20} \cdot \Phi_{18} \cdot \Phi_{12} \cdot \Phi_9 \cdot \Phi_6 \cdot \Phi_4 \cdot \Phi_3 \cdot \Phi_2 \cdot \Phi_1 \cdot x, \end{aligned}$$

where f_1 , f_2 , f_3 are non-cyclotomic irred. polynomials of degrees 92, 210, and 708 respectively.

CFP: The preponderance of cyclotomic factors of necklace polynomials.

▷ $\Phi_m(x)$ dividing $M_d(x)$ is equivalent to $M_d(\zeta_m) = 0$.

Question: When and why does $\Phi_m(x)$ divide $M_d(x)$?

Observation: When $\Phi_m(x)$ divides $M_{105}(x)$, so does $\Phi_e(x)$ for all divisors $e \mid m$.

$$M_{105}(x) = f \cdot \Phi_8 \cdot \Phi_6 \cdot \Phi_4 \cdot \Phi_3 \cdot \Phi_2 \cdot \Phi_1 \cdot x$$

Recall that

$$x^m - 1 = \prod_{e|m} \Phi_e(x).$$

Thus all cyclotomic factors of $M_{105}(x)$ accounted for by

$$x^8 - 1, x^6 - 1 \mid M_{105}(x).$$

Most cyclotomic factors of necklace polynomials are accounted for by factors of the form $x^m - 1$, but not all!

$$M_{10}(x) = g \cdot \Phi_{6} \cdot \Phi_{4} \cdot \Phi_{2} \cdot \Phi_{1} \cdot x$$

 $\triangleright \Phi_6$ divides $M_{10}(x)$ but Φ_3 does not.

Recall that

$$x^m + 1 = \prod_{\substack{e \mid 2m \\ e \nmid m}} \Phi_e(x).$$

▷ $x^3 + 1 = \Phi_6 \cdot \Phi_2$, thus all cyclotomic factors of $M_{10}(x)$ accounted for by

$$x^3 + 1, x^4 - 1 \mid M_{10}(x).$$

Conjecture (H. 2018)

If $\Phi_m(x)$ divides $M_d(x)$, then either $x^m - 1$ divides $M_d(x)$ or m is even and $x^{m/2} + 1$ divides $M_d(x)$.

- Checked for $1 \le m \le 300$ and $1 \le d \le 5000$.
- Easier to analyze factors for the form $x^m \pm 1!$
- (Heuristic) There are good reasons for $M_d(x)$ to have factors of the form $x^m \pm 1$ and we do not expect any special factors without a good reason.

Structure of Cyclotomic Factors

This result highlights some of the structure underlying the CFP.

Theorem (H. 2018)

- Let $m, d \ge 1$.
 - Ubiquity
 - If $p \mid d$ is a prime and $p \equiv 1 \mod m$, then $x^m 1 \mid M_d(x)$.
 - ▷ In particular, $x^{p-1} 1 | M_d(x)$ for each p | d.
 - Multiplicative Inheritance
 - If $x^m 1 | M_d(x)$, then $x^m 1 | M_{de}(x)$.
 - ► If $x^m + 1 | M_d(x)$ and e is odd, then $x^m + 1 | M_{de}(x)$. ► $M_d(x)$ generally does not divide $M_{de}(x)$.
 - Necessary Condition
 - If x^m − 1 | M_d(x), then m | φ(d).
 φ(d) := |(ℤ/(d))[×]| is the Euler totient function.

Thm: If
$$p \mid d$$
, then $x^{p-1} - 1$ divides $M_d(x)$.
 $\bowtie M_p(x) = \frac{1}{p}(x^p - x).$

Ex. $d = 105 = 3 \cdot 5 \cdot 7$.

$$M_{105}(x) = \frac{1}{105}(x^{105} - x^{35} - x^{21} - x^{15} + x^7 + x^5 + x^3 - x)$$

= $f_1 \cdot \Phi_8 \cdot \Phi_6 \cdot \Phi_4 \cdot \Phi_3 \cdot \Phi_2 \cdot \Phi_1 \cdot x$

▷ **Non-trivial** factors $x^m \pm 1$ are those not given by theorem.

▷ $x^8 - 1$ is a non-trivial factor of $M_{105}(x)$.

Goal: Characterize/classify the non-trivial cyclotomic factors of necklace polynomials.

Theorem (H. 2018)

Let $m, d \ge 1$ such that $m \nmid d$. If $x^m - 1 \mid M_d(x)$, then

$$\frac{x^m-1}{x-1} \mid \Phi_d(x)-1.$$

Equivalently, if $M_d(\zeta_m) = 0$ for all mth roots of unity ζ_m , then for all non-trivial ζ_m ,

$$\Phi_d(\zeta_m)=1.$$

Theorem (H. 2018)

Let $m, d \ge 1$ such that $m \nmid d$. If $M_d(\zeta_m) = 0$ for all mth roots of unity ζ_m , thenfor all non-trivial ζ_m

$$\Phi_d(\zeta_m)=1.$$

Ex.
$$x^8 - 1 \mid M_{105}(x)$$
, so
 $1 = \Phi_{105}(\zeta_8) = \prod_{j \in (\mathbb{Z}/(105))^{\times}} (\zeta_8 - \zeta_{105}^j).$

- Factors on right are called cyclotomic units.
- CFP gives multiplicative relations in cyclotomic units.

CFP & Relations in Cyclotomic Units

- There are trivial relations satisfied by cyclotomic units coming from complex conjugation and taking norms.
- Milnor conj. only trivial relations, Bass (1966) published a proof.
- Ennola (1972) discovered new non-trivial relations, proved these give complete presentation.

Observation:

▷ Trivial cyclo. factors of necklace polys. give trivial cyclo. unit relations.

▷ Non-trivial cyclo. factors give non-trivial cyclo. unit relations.

CFP & Euler Characteristics

Let $Irr_d(K)$ denote the space of deg. *d* irreducible monic polynomials in K[x].

$$\triangleright \ M_d(q) = |\mathrm{Irr}_d(\mathbb{F}_q)|.$$

Theorem (H. 2018)

Let $d \ge 1$ and let χ_c denote the compactly supported Euler characteristic.

$$M_d(1) = \chi_c(\operatorname{Irr}_d(\mathbb{C})) = \begin{cases} 1 & d = 1\\ 0 & d > 1. \end{cases}$$
$$M_d(-1) = \chi_c(\operatorname{Irr}_d(\mathbb{R})) = \begin{cases} -1 & d = 1\\ 1 & d = 2\\ 0 & d > 2 \end{cases}$$

Since C is alg. closed, only have irreducible polynomials in degree 1.

$$\operatorname{Irr}_{d,1}(\mathbb{C}) = \begin{cases} \mathbb{C} & d = 1 \\ \emptyset & d > 1. \end{cases} \Longrightarrow M_d(1) = \begin{cases} 1 & d = 1 \\ 0 & d > 1. \end{cases}$$

Therefore d > 1 implies $\Phi_1 = x - 1$ divides $M_d(x)$.

CFP & Euler Characteristics

> All irreducible polynomials over \mathbb{R} have degree at most 2.

$$\operatorname{Irr}_{d,1}(\mathbb{R}) = \begin{cases} \mathbb{R} & d = 1 \\ \mathcal{U} & d = 2 \\ \emptyset & d > 2, \end{cases} \qquad M_d(-1) = \begin{cases} -1 & d = 1 \\ 1 & d = 2 \\ 0 & d > 2. \end{cases}$$

•
$$U = \{x^2 + bx + c : b^2 - 4c < 0\}$$

> All irred. polys. over \mathbb{R} have degree at most 2.

$$\operatorname{Irr}_{d,1}(\mathbb{R}) = \begin{cases} \mathbb{R} & d = 1 \\ U & d = 2 \\ \emptyset & d > 2, \end{cases} \qquad M_d(-1) = \begin{cases} -1 & d = 1 \\ 1 & d = 2 \\ 0 & d > 2. \end{cases}$$

For the refore, d > 2 implies $x^2 - 1$ divides $M_d(x)$.

• Geometric explanation of $M_d(\zeta_m) = 0$ for m > 2?

The CFP extends along at least two natural generalizations of necklace polynomials.

- ► If G is a finite group then one can define a G-necklace polynomial $M_G(x)$.
 - If $G = C_d$ is cyclic, then $M_{C_d}(x) = M_d(x)$.
 - CFP holds whenever G is solvable.
- ▶ If $d, n \ge 1$, let $\operatorname{Irr}_{d,n}(\mathbb{F}_q)$ be the space of deg. d irreducible polynomials in $\mathbb{F}_q[x_1, x_2, ..., x_n]$.
 - Define the higher necklace polynomials $M_{d,n}(x)$ by

$$M_{d,n}(q) := |\mathrm{Irr}_{d,n}(\mathbb{F}_q)|.$$

•
$$M_{d,1}(x) = M_d(x)$$
.

For each *n*, CFP holds for all but finitely many *d*.

Thank you!